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1 Introduction

During the grant period 15 January 1989 to 14 October 1992, we have made major contributions
in three principal areas:

"* Robust Kalman filtering;

"* Structure determination for X- ay crystallography; and

"• Stochastic recursive algorithms for global optimization.

These theoretical advances have wide applications in diverse problems such as identification of
systems using maximum likelihood techniques, filtering in the pres, nce of non-Gaussian observation
noise, outlier detection, image analysis, and ph:--se estimation problems.

A technical overview of our research is presented in Section 2. This is followed by lists of the
students, post-doctoral fellows, and faculty that have been supported by the grant. in Section 3..
of invited presentatio1's, in Section 4; and of publications based on the work described herein, in
Section 5.

2 Description of Research

2.1 Robust Kalman Filtering

2.1.1 Introduction

Time-dependent data are often modeled by linear dynamic systems. Such representations assume
that the data contain a deterministic component which may be described by a difference or differ-
ential equation. Deviations from this component are assumed to be random, and to have certain
known distributional properties. These models may be used to estimate the "true- values of the
data uncorrupted by measurement error, and possibly also to draw inference on the source gener-
ating the data.

Kalman Filtering has found an exceptionally broad range of applications, not only for estimating
the state of a linear dynamic system in the presence of process and observation noise, but also
for simultaneously estimating model parameters, choosing among several competing models, and
detecting abrupt changes in the states. the parameters, or the form of the model. It is a remarkably
versatile estimator, originally derived via orthogonal projections as a generalization of the Wiener
filter to non-stationary processes, then shown to be optimal in a variety of settings: as the weighted
least-squares solution to a regression problem, without regard to distributional assumptions; as the
Bayes estimator assuming Gaussian noise, without regard to the cost functional: and as the solution
to various game theoretic problems.

Neverthleq-, the Kalman Filter breaks down catastrophically in the presence of heavy-tailed
noise, i.e. outliers. Even rare occurrences of unusually large observations severely degrade its
performance, resulting in poor state estimates, non-white residuals, and invalid inference.

Statisticians and engineers often confront the problem of dealing with outliers in the course
of model building and validation. Routinely ignoring unusual observations is neither wise. nor
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statistically sound, since such observations may contain vahlable information as to unimodeled
system characteristics, model degradation or breakdown, measurement errors, etc. But detecting
unusual observations is only possible by comparison with the underlying trends and behavior: vet.
it is precisely these that non-robust methods fail to capture when outliers are present. The purpose
of robust estimators is thus twofold: to be as nearly optimal as possible when there are no outliers.
i.e. under "normal" conditions; and to be resistent to outliers -.-h,-n they do occur, i.e. to be able
to extract the underlying system behavior without being unduly affected by spurious values.

Past efforts to mitigate the effects of outliers on the Kalman Filter rang- fr,n "-! hoc prv.r-
t,.'es such as simply discarding observations for which residuals are "too large," to more formal
approaches based on non-parametric statistics. Bayesian methods, or minimax theory. An exten-
sive survey of the literature is in [34, 35]. Many of these methods include heuristic approximations
with ill-understood characteristics. While some have been empirically found to work well. their
theoretical justifications have remained scanty at best. Their nonlinear forms. coupled with the
difficulties inherent in dealing with non-normal distributions, have resulted in a strong preference
in the literature for Monte Carlo simulations over analytical rigor.

In an effort to provide a more rigorous basis for sub-optimal filtering in the presence of non-
Gaussian noise, a robust recursive estimator has been derived formally. combining Huber's theory
of minimax robust estimation of a location parameter. recursive estimators based on the stochastic
approximation theory of Robbins and Monro, and approximate conditional mean estimation based
on asymptotic expansion. An overview of this approach appears in [32].

2.1.2 Preliminaries

Below, the notation L(_) denotes the probability law of the random vector x taking values in Rd.
.IV(IL, E) denotes a multivariate normal distribution with mean A and covariance V. and "(x_; A_, E)
is the associated probability density function.

Consider first the model
zn = knn + Dv,, (2.1)

where

_0+1 = Fn0n + W, (2.2)
n= 0, 1,... denotes discrete time; en C Rq is the system state, with a random initial value

distributed as (O) = (,o); -, E RP is the observation (measurement): w, E Rq is the
process (plant) noise distributed as L(X,) = .F(_, Qn); v, c RP is the observation (measurement)
noise distributed as £(v,) = F, a given distribution that admits a density and has mean and
variance given by Et7v,1 = 0 and E[I 1nvL TJ = R; {F,},{Hn}, {Dn},{Q}, Eo and R are known
matrices or sequences of matrices with appropriate dimensions; • E Rq is a known vector: and
finally N, wn, and v. are mutually independent for all n.

The Kalman Filter is the estimator 0 of the state 0, given the observations Z,, .. o,.. •, ,
and obeys the well-known recursion

9 = Kn±A', (2.3)

where
On Fn.if2-. (2.4)
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is the conditional a priori estimate of the state at time n (i.e.. before updating by the observation
z,,) and

M, = F,._P,,_F$-I + Q,- (2.5)

is the conditional a priori estimation error covariance at time n.

n = _ - HQ0 (2.6)

is the innovation at time n and

F,= HM,'Hf + D,, RD, (2.7)

is its covariance
K MH = M,, Hn n (2.8)

is the gain, and
P, = m,, - K(2.9)

is the a posteriori estimation error covariance at time n (i.e.. after updating). The initial condition
0 is given.

As is clear from Equations 2.3 and 2.6. the estimate is a linear function of the observation, a
characteristic that is optimal only in the case of normally distributed noise or elliptical processes.
which are sample-pathwise mixtures of normal processes. Similarly, Equations 2.5 and 2.8-2.9
show that the gain and covariance are independent of the data, a property related once again to
the assumption of normality. Finally, the Gaussian case F = A"(0, R), the residual (innovation)
sequence {y 1,'- , 2} is white and is distributed as £(-(_) = AK(0_, i).

When F is a heavy-tailed distribution, on the other hand, the state estimation error can grow
without bound (since the estimate is a linear function of the observation noise), the residual se-
quence becomes colored, and residuals become non-normal. Thus, not only is the estimate poor.
but furthermore invalid inference would result from utilizing the residual sequence in the case of
significant excursions from normality. A robust estimator should at the very least have the follow-
ing characteristics: the state estimation error must remain bounded as a single observation outlier
grows arbitrarily; the effect of a single observation outlier must not be spread out over time by the
filter dynamics, i.e. a single outlier in the observation noise sequence must result in a single outlier
in the residual sequence; and the residual sequence must remain nearly white when the observation
noise is normally distributed except for an occasional outlier.

Such behavior could be obtained by replacing Equation 2.3 by, say,

+,=V ,,n+ K,_(_d), (2.10)

where O) is an influence-bounding function that downweights "large" observations. In fact. a
number of robust filters in the literature can be represented in the form 2.10. (See [351.) The
significance of the functional 0 lies in the fact that it processes the innovation so as to mitigate
the effects of observation outliers. "Overprocessing" the data results in loss of efficiency at, the
nominal model, while "underprocessing" makes the estimator excessively sensitive to outliers, i.e.
non-robust. Some researchers have chosen V, functions on the basis of engineering considerations.
while others have derived them on probabilistic grounds, often using a Bayesian framework. The
latter approach was taken here.
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2.1.3 The Conditional Prior Distribution

Suppose the observation noise distribution .F is a member of the E-contaminated normal class of
distributions

,={(1 -R ).A(O, R) + -H: H E S (2.11)

where S is the set of all suitably regular probability distributions, and 0 <_ F 1 is the known
fraction of "contamination." This form of the observation noise distribution can be used in an
asymptotic expansion, in order to obtain a first-order approximation of the conditional prior dis-
tribution p(&_0Zm_) of the state variable O, given the observations Z,-,. A key proprtry that
ensures the finite dimensionality of this approximation is the exponential stability of the Kajmi.:
Filter, i.e. the fact that the effects of past observatiorrs decay fast enough. The resulting distri-
bution is a perturbation from the normal, and all the pertinent parameters are given by various
Kalman Filters and optimal smoothers that each make a specific assumption on the distribution of
the noise at each point in time.

The first-order approximation of the conditional prior distribution p(0njZ,,_. ) is next used
to obtain a first-order approximation of the conditional mean of the state variable 0,, ,;ven the
observations Z--i.e. to update the estimate by the current observation z,. This step uses a
generalization of a proof due to [28, 29], made possible by a change in the order of integration. A
similar derivation also yields the conditional covariance.

From 2.11, and assuming for now that H = H* is known, one can write

=(1 - ?1,-W." + q7"4 (2.12)

where 17,, is a random variable independent of 00 and {wj} obeying

0 w.p. (1-E) (2.13)
1 w.p.

and {iz,} and {_v } are random variables independent of {1}, _, and {Wn} with L(w$) = .'(0_ R)

(for some R > 0) and C(v_ H) = H*. Finally, loosely defining a random variable distributed as H*
as an "outlier," denote the event "there has been no outlier among the first n observations" by
7-in {770 = 0,... , rn = 0}, and the event "there has been exactly one outlier among the first n
observations, at time i - 1" by -'H = {77o = 0, 77i_- = 0, ?7i-I = 1, r7i = 0..., y. = 0}. Then. it
is easy to verify that

p(O"IZn-J)p(Z"-J)

n• (2.14)
+ -p(_i_ )p(Zn_ Ii)P(e. IZij)

+ higher-order terms.

Clearly, the first term on the right-hand side of 2.14 is the distribution conditioned on the event
that there were no outliers, each term in the summation to the event that there was exactly one
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outlier. and the higher-order ternis to the occurrence of two or more outliers. Moreover. defining

2' 0, z -2, --,' n- 1,- it follows that

=p(Z I Itj -_1)p(A, IZ,_, 'Hn -)i P(= 0 i- 16 , (2.15)

Note that the only non-normal term on the right-hand side of 2.15 is the last one. All other terms
in 2.15, as well as in 2.14, are normal. These remarks are formalized in the following theorem.
Note first that if the system is completely observable and completely controllable, then given ally
00 < Ko. and defining the clused-loop recursion

2O,+, = (I - K.+1H.+I)Fn, (2.16)

there exist A > 0 and 0 < 6 < 1 such that

I&I~I < AP (2.17)

i.e. the filter is exponentially asymptotically stable.

Theorem 2.1.1 Let the system given by Equations 2.1-2.2 be stable, and let 6 be a real number
for which 2.17 holds. Let w be the smallest integer such that

6W < • (2.18)

if
we < 1 (2.19)

and if the distribution H* has bounded moments, then

p(=. IZn- 1) (1 e)W KnOkA(.;0O,,IMo) (2.20)
n

e(1- _ •-AK l 4Z(9-?•°-, v) (2.21)
i=n-w+l

J ((z•_ - ý;Hi_• + H•_ 1 V,(6. - Qh), (2.22)

H IVi'Hi 1 I -T zT)d*(ý) (2.23)

+ OP(w 2 9 2) (2.24)

for all n > w, where, for i =0, 1,..- and n > i,

= + n (2.26),-in

M.,-,& P, FTn + Q,- (2.27)

n1 =' . , - Hnd, (2.28)

Fn + DnRDT (2.29)
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,,= .~,__ I,,_� ,,_�~ <(2.30)

p -i• I r[ K•F ZT (2.3a1

and
, -tk ',,_n 1; 0_, F'_ t ), (2.32)

for 1 1,2,... and n > i.
Vn -V,- -1 MA (2.33)
1 - ,,i n 1 i

,= _n_1 + V,,_Kn- 1 2,,_1  (2.34)
wa ",> -Va KT T 7'"vWi= W_,' _ T~_17, (2.35)

subject to the initial conditions
6 = 1-,-1 (2.36)

Al,'= F -_MPIFýL + Q-I (2.37)

Vi = M 1_ IFýTý Ili (2.38)

= g(2.39)

Wi = 11N9 1  (2.40)

., (2.41)

for i > 0, and

00 00o (2.42)

MO O- 1 (2.43)

o= 1. (2.44)

The normalization constant satisfies

-1= (i -)W (2.45)

(-n- Y nJA(zi-i -_;Hi-L-iv, (2.46)
i=nl-w+ 1

H__ W,•Hr_•)dH*(_) (2.47)

(The case n < w is very similar.)

Proof. See [34, 35].

Note that Equations 2.25-2.31 are a bank of Kalman Filters, each starting at a different point
in time i = 0, 1, 2,.... Because of the way in which they are initialized, the cases i > 0 correspond
to Kalman Filters skipping the i - 1st observation. The case i = 0 is based on all observations.
Similarly, Equations 2.33-2.35 are a bank of optimal fixed-point smoothers, each estimating the
state at a different point in time i = 0, 1, 2,. -. , based on all preceeding and subsequent observations.
Thus, each term in the summation on the right-hand side of 2.24 is a Kalman Filter that skips one
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observation, coupled with an optimal smoother that estimates the state at the time the observation
is skipped.

Evidently, as n -. oc, the probability of the event that only a finite number of outliers occur
vanishes for any E > 0. That the density can nevertheless be approximated by the first-order
expression in 2.24 is due to the exponential asymptotic stability of the Kalman Filter: ,c represents
a "windozx size" beyond which the effects of older observations have sufficiently attenuated.

2.1.4 The Conditional Mean Estimator

The approximate conditional prior distribution p(0,IZ,_i) of Theorem 2.1.1 is now used to derive
the conditional mean and variance, respectively denoted by

T_. = E[efzI (2.48)

and
I,= E[(e - _- Tn)TZ. (2.49)

Let h* denote the density associated with H*, provided that it exists.

Theorem 2.1.2 Let the conditions of Theorem 2.1.1 be satisfied for the system given by Equa-
tions 2.1-2.2. If h* exists and is bounded and differentiable a.e., then

n

T_, =-0 (1 - e)' a 1+irTV + E(1 - Y_"•-eu,±+ Z iT, + Op(w 2e 2 ) (2.50)

for all n > w, where
To = _-- + MHVH,.nlp(z.l- H ) (2.51)p igiTHT -j~ Hi

Tn = 0n + n 1- 13&(Lai - I -H v-t-,+) (2.52)

(r 1 0 - •c), +1 EKIA( - _HnO0, HnM0 H. )h()d< (2.53)

7r= (- E)n+l fAr(z-i 1 -- ; Hi-lL'+, HiiVn+tHi?1 )h*(t)dý (2.54)

and the influence-bounding functions are given by

V(( -,E).Ar((; 0_, F°) + E f Af(( - ý; 0, HnMgOHT.)h*t{_)d{)

o__ (1 n (2.55)

-- - f (f(f -( ; Q, Hi- 1 W'+1Hi-1 )h*(ý)d)(

with 6' K' M' i . and In as defined in Theorem 2.1.1, subject to the same

initial conditions. Furthermore,

, = (1 -WF' o o • ,,+ • r + e(1 - 'r,-1 Z rn + OP(wC 2 ) (2.57)
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for all n > c. where
!:0 = .10 0 Tr -01u:

, I (Z.. - ,-- -,if H , _) I , p, , + (T "- TJ)(T T

,_- p, _ , vrf PI,,(z 1__ - f,_tu ,+)H,_11§1
1 P,', + (T,,_ - T__',)(T,_ - L',)r. (2.59k

and T%, is given by
S =• (1.60)

(The case n < w is very .similar.)

Proof. See [34, 351. 1

Both Theorem 2.1.1 and Theorem 2.1.2 are based on the assumption that outliers occur rarely
relative to the dynamics of the filter. In the unlikely event that two outliers occur within less than
,.u time steps of each other. Equation 2.52--which shows that T' is linear in _ -suggests that the
estimate would be strongly affected. This implies that the estimator developed here is robust in
the presence of rare and isolated outliers, but not when outliers occur in batches.

The estimator is a weighted sum of stochastic approxzmatzon-like estimators, wit h weights equal
to the posterior probabilities of each outlier configuration. These probabilities are conditioned on
all the observations, including the current one. Since the banks of parallel filters and smoothers
are entirely independent of each other, the estimate derived here is well suited to parallel compu-
tation. Furthermore. the covariance is a function of a set of matrices { M, ,}, { P,, }, { r" }, { V' }, and
{W, }, which are themselves independent of the observations. Thus. they can be pre-computed and
stored. as is sometimes done with the Kalman Filter. Although the covariance given by 2.57 is not
indeper-dent of the data (a feature that would only be optimal in the normal case), this implies
that a great deal of computation may nevertheless be performed off-line.

Finally, it is easy to verify that. for E = 0,

sV.( -;Fo; °)I~ (2.61)
__ A"(hY 0; .fo

- -'f ) - - -n( -1
IV- f(, 0 .-r o - o (2.6 2 )

•- n "-.1

so that T,, reduces to the Kalman Filter when the noise is normally distributed.

2.2 X-Ray Crystallography

2.2.1 Introduction

A new Markov random field-based algorithm has been proposed for signal reconstruction from
Fourier transform magnitude motivated by the data reduction calculations of X-ray crystallogra-
phy [12, 5, 11, 14, 8, 6, 7, 9, 13, 15, 101. The purpose of an X-ray crystallography experiment i"
to determine the position in three dimensional space of each atom in a molecule. The measured
data are the magnitudes squared of the Fourier transform of the electron density function of a
crystal of the molecule of interest and possibly also of chemical derivatives. The data reduction



calculations are a signal reconstruction pro)lerl for the three dimensional electron dmensitv. III tle
so-called "*direct methods of interest here. tOe rec'onstruction is based o0 1 noisy ij vasurenent oft

the magnitude squared of the Fourier transform of the electron d(ensitv of a single crvstal. that is,
no chemical derivatives of the molecule are studied.

These reconstruction problems are unusual [30. 241. For instance. it is the periodicitv of the
crystal that samples the Fourier transform of tihe three dimensional repeat unit (called a -'unit

cell"), so that the sampling is beyond the control of the investigator, and the sampling rate is-
below the Nyquist rate for the autocorrelation function that can be computed from the available
Fourier transform magnitudes. Furthermore. the electron density is invariant under a -;pacrt group
svrnmetrv.

The most powerful direct methods are probabilistic in nature !20. 1, 2[, are based on a model in
which the atomic locations are independent random variables, and are successful on small molecules.
The failure of these techniques to extend to larger molecules is attributed by Bricogne 11. 21 to in-
consistent usage of probabilistic information and inaccurate computation of marginal probabilities.
In addition. lie notes the very idealized nature of the standard independent atomic location ly-
pothesis.

There are three major themes in tile work reported here: tractable incorporation of a priori
information, consistent use of probabilistic information, and analytical (rather than numerical) ap-
proximations. The starting point is a Markov random field (MRF) a priori model for the electron
(tensity: a Bayesian statistical problem whose solution is the thresholded conditional mean of the
M1RF given the data is defined: and the conditional mean is approximately computed using sym-
metry breaking, the spherical model, and small noise asymptotics. Initial results from work at MIT
are reported in [5. 8, 6. 7] and further results from work continued at Purdue University (School of
Electrical Engineering) are described in [12. 11, 14. 9, 13. 15, 10j.

2.2.2 The MRF a priori Model and the a posteriori Model

The MRF defines a probability distribution on a collection of binary random variables Oq E {0, 1)
whih lie on a lattice. The connection between the MRF and the electron density is that tile
atoms are restricted to lie on the lattice and site f is occupied by an atom if and only if o, = L
This construction assures a positive and atomic electron density. It remains to arrange the correct
spacing between atoms, which is achieved by the Hamiltonian Hapriari of the MRF. flapriori is the

sum of energies iij, associated with each site in the lattice. The idea behind ui, is simple: If an
atom is not present at site i7 then uj = 0. If an atom is present at site ii then

1. if other atoms are located within a minimum bond radius of length r7 then ii, is positive
because the atoms are unphysically close while

2. if no other atoms are located within a maximum bond radius of length r7 then mq is positive
because the atom at site 4l is floating free unbound in the molecule while

3. if one or more atoms are located between the minimum and maximum bond radii and none
are located closer than the minimum bond radius then ui, is negative because the atom at
site ii can be correctly bound.
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While a varietY of complicated functional fornis ca•a be chosen for ti,j. good sliccss has beill a(liie,•,,e
with quadratic forms which make possible a wide range of ainalytic catculatltols. Note t hat I1'4'1'•,

is invariant, under translations. rotations. a(nd inversions of the field o.

In light of the relationship between ( and the electron densitv, the exact observaTions are ;1 th,

magnitude squared of the Fourier coefficients of .. The actual data yý are additivel, corrupt ed Iv

noise which is modeled as Gaussian with zero mean and known k'-dependent variance, (7::

The Joint alnd a po.terzori distribut iis on o and y! can be written as NIRFs •o the calculation
of the conditional mean is simply the calculation of the spatially varying inean of this new MRF.
The Hamiltonian for this MRF is Hfapriori + H1 obs where H'i' comes from the Gaussian conditional
observation distribution. There is. however, a problem. Specifically. the invariance of Hp'rI"f 11 mder
translations, rotations. and inversions of the field o and the lack of phase iieasurements implies

that the mean of the new MRF is a constant. In order to solve this problem tile Hamiltonian is
modified by introducing at symmetry breaking term Hs• which is proportional to i ' This
is a good choice because for suitable u'. called the "kerneFl, it breaks the svnmetries and because
it is linear and can thus be viewed as a small pert urbation. The values of th, variables J', } are

set by a data adaptive optimization described below.

2.2.3 Bayesian Estimation and Computation of the Conditional Mean

The cost that is minimized in order to derive the Bayesian estimator is the mean squared error
between the true and reconstructed fields. For these binary fields. the "'segmentation' cost that
applies an equal penalty to any reconstruction error leads to the same estimator. The result of
the minimization problem is that the estimator has two steps: first compute the conditional mean
of the electron density o given the data y and then threshold the result at value 1/2 so that
sites with conditional mean greater (less) than 1/2 take value 1 (0). As mentioned above, the
conditional mean is computed by computing the spatially varying mean of the new MRF which
has Hamiltonian Hapriori + Hobs + Hsb. This calculation is (lone through two approximations:
First. the spherical model is introduced in order to relax the , j {0. 11 constraint. It transforms
a sum over the corners of a hypercube into an integral over the surface of a hypersphere inscribed
around the hypercube. Half of the integrations can be done analytically but the remaining half are
intrartable exponential-of-quartic integrations. Therefore the second approximation is made which
is the evaluation of these integrals by small-noise asymptotic techniques where the "small noise"
refers to small observation noise, i.e.. small r+-. (This is the relevant limit in X-ray crvst.allographv).

k
The key step in the asymptotics is the calculation of the critical point (i.e.. the global minimum
of the exponent), which can be done exactly with computation linear in the size of the MRF
lattice. The rcsults of these two approximations are apalytic formulas for the conditional mean of
the Fourier coefficients of the field given as functions of the critical point and the kernel v, of the
symmetry breaking.

2.2.4 Data Adaptation

The kernel ) is chosen to minimize a cost function of the conditional mean of the field ,., given
the data y. This optimization makes the estimator adapt to the data. The primaTry puTIrOS' of

the adaptation is to ameliorate the errors introduced by the spherical model. The cost penalizes
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excursions of the mean outside of the interval [0.11 (which are exclusively ivdue to the apprlxiniat ions
since oq E {0, 1 }), penalizes excursions from the two endpoints 0 and I (since one desires a c' that
results in a confident estimator), and penalizes deviations of the energy in (, from a target (since
one (toes not want t, to vanish and hence fail to break the symmetries or to grow too large so that
Hs.b dowminates the total Hamiltonian).

Once ý'- is chosen the conditional mean of the Fourier coefficients of the field o can be calculated.
Then the Fourier series is inverted to compute the conditional mean of the field o. Finally. the
conditional mean is thresholded at value 1/2, that is, an atom is placed at each lattice site where
the conditional mean exceeds 1/2. One and two dimensional numerical examples are given in 16i.

2.2.5 Incorporation of Space Group Symmetries

The unit cell is the periodic repeat unit of the crystal. The presence of a nontrivial space group
symmetrv means that there is additional structure within the unit cell. For example. the unit cell
might be divided in half with the electron density in one half the mirror image of the electron density
in the other half. The space group is known before the reconstruction is done. In one (dimnension
there are only two space groups: the trivial group P1 where there is no structure within the unit
cell (i.e., a periodic function) and the group Pi for which there is a mirror point of symmetry in
the middle of the unit cell (i.e., periodic and even). In three dimensions the situation is much more
complicated and there are a total of 230 space groups [21].

Three approaches to solving signal reconstruction problems in the presence of nontrivial space
groups are described [12, 11. 14, 15, 101. In Aperoach 1, the actual space group 9 is replaced by
the subgroup P1, the signal reconstruction results of [8, 6] are applied, and then the invariance
under g information is added in two ways. First, reconstructions that are invariant under P1 but
not ! are transformed into reconstructions invariant under 9 by averaging. Second, the invariance
of the signal under 9 is applied as a soft constraint by adding a term to the C cost function
for ý, optimization. The advantage of Approach I is simplicity since Ref. [8. 6] is applied with

little alteration to any space group 9. The disadvantage is the suboptimal use of space group
information. Furthermore. the data adaptation-minimization of C with respect to Z,-occurs in a
higher dimensional space than is necessary. Symmetry breaking is retained.

The second and third approaches both integrate the presence of the space group 9 as a hard
constraint into the signal reconstruction process. The two approaches differ by the order in which
noncommuting nonlinear operations are performed: in Approach 2 the spherical model is applied
before the space group symmetry is enforced (so that the spherical model i- applied to the entire
unit cell) while in Approach 3 the order is reversed (so that the spherical model is applied only to
the asymmetric unit). (The asymmetric unit is a minimum subset of the unit cell that is sufficient
to determine the electron density in the entire unit cell). The advantage of Approach 2 is that the
calculation of the critical point in the small observation noise asymptotics is only slightly changed
from Refs. [8][6, Appendix A]. Therefore it can be done analytically. The disadvantage is that the
spherical model approximation is applied over a larger number of sites (the entire unit cell) and
so it is less accurate. Symmetry breaking is required. The advantage of Approach 3 is that the
spherical model is applied over a smaller number of sites (only the asymmetric unit) and so it is
more accurate. The disadvantage is that the calculation of the critical point in the small observation
noise asymptotics is substantially more difficult than 'n Refs. [81[6, Appendix A] and to (late an
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analytical solution is available only for a special case. Syinnietrv breaking is not requir(,d, 1. 1irrorilu"
the fact that symmetry breaking is not required in an exact solution. Il fact. if used. syv zni1t rV
breaking only influences the value of second and higher order terms in the asymplotic expansion.
In both Approaches 2 and 3 the data adaptation occurs in the smallest possible diiniretsioial space.

The methods are compared [12, 11, 14, 15, 10] in 1D for space group Pi. Figure 1 shows perfor-

mance. measured as E , -,(,, ! -•,)2, for six different estimators as a function of the observation
noise standard deviation o for a L = 17 sites lattice. All results are Monte Carlo computations
using 1000 realizations. The dashed lines E and A are estimators from Refs. [13, S. 6] which are
unaware of the presence of P1 symmetry. E is the exact estimator computed by explicitly sum-
ming over all o configurations. Svmmetry breaking is present. This estimator is totallh impractical
for any reasonable sized lattice and is the reason for the choice of L = 17 for these simulations.
However, it is the optimal Bayesian estimator in the absence of space group information. .4 is the
approximate estimator from Refs. [13, 8, 6]. The solid lines are estimators that are aware of the
presence of Pi symmetrY. E* is the exact estimator computed by explicitly summing over the
P1 symmetric subset of 6 configurations (but with symmetry breaking turned offY l.41. A2, and
A3 are the Approach 1, Approach 2, and Approach 3 estimators. The critical point for the small
observation noise asymptotics for Approach 3 was determined numerically by N2ONG (Ref. [22.
Section 8.4, pp. 903-908]).

Note several aspects of these numerical results: Knowledge that the signal is P1 symmetric
is very valuable-compare E with E*: with knowledge that the signal is P! symmetric. symmetry
breaking is not required-see E*; Approaches 1 and 2 provide roughly equivalent performance.
performance that sometimes exceeds that of the optimal estimator E that is unaware of the P1
symmetry (and is very expensive to compute); and Approach 3 provides poor performance which
is attributed to the lack of data adaptation.

2.2.6 Analytical Gradients for Data Adaptation Optimization

In the cited work, the optimization of 0, was done using a multidimensional downhill simplex
method [33. Section 10.4 pp. 305-309]. Evaluating the cost function requires two FFTs. A natural
improvement is to use a conjugate gradient algorithm with analytical gradients. The fact that
the gradient can be computed analytically is not surprising though the calculation requires care
because, for example, V, is real so that IF is conjugate symmetric. What is surprising is that the
cost function and its complete gradient can be computed at a cost of four FFTs-only twice as much
computation as was required for the function value alone.

The algorithm for efficient gradient calculation has been worked out in 3D for an Approach 2
estimator for the monochnic C2 space group. (The equations are not included here). Results using
a Fletcher-Reeves-Polak-Ribiere conjugate gradient algorithm [33, Section 10.6 pp. 318-3221 on a
4 x 4 x 4 problem with a 2% observation noise standard deviation (realistic for small molecule X-ray

crystallography) are shown in Figure 2. The z axis is E ,( - ý,)2 and the x and y coordinates
are two parameters in the cost function C. Note both the excellent performance achieved and the
relative insensitivity of the performance to the values of the two parameters. Extension of these
results to experimental data is currently underway.
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2.3 Recursive Stochastic Algorithms for Global Optimization in B'"

2.3.1 Introduction

A class of algorithms for finding the global minimum of a smooth function U(x), r E R" are terrmed
Modified Stochastic Gradient Algorithms. This section analyzes the convergence of algorithms of
the form

Xk+t = Xk - (,k(VU(Xk) + W.) + bkTVk, (2.63)

where {f&} is a sequence of Rd-valued random variables. {ITk} is a sequence oi Sta.1dard d-
dimensional independent Gaussian random variables, and {akj}, {bk} are sequences of positive
numbers with ak, bk 0- . An algorithm of this type arises by artificially adding the bklVk term

(via a Monte Carlo simulation) to the standard stochastic gradient algorithm

Zk+1 = Zk - ak(VU(Zk) + W). (2.64)

Algorithms like 2.64 arise in a variety of optimization problems including adaptive filtering.
identification and control: here the sequence {Jk} is due to noisy or imprecise meawsurements of
VU(.) (c.f. [26]). The asymptotic behavior of {Zk} has been much studied. Let S and S* be the set
of local and global minima of U(.), respectively. It can be shown, for example, that if U(-) and {f }
are suitably behaved, ak = A/k for k large, and {Zk} is bounded, then Zk - S as k - o w.p.t.
However, in general Zk 7 S* (unless of course S = S*). The idea behind adding the additional
bkWk term in 2.63 compared with 2.64 is that if bk tends to zero slowly enough. then possibly
{Xkj} (unlike {ZkJ) will avoid getting trapped in a strictly local minimum of U(.) (this is the usual
reasoning behind simulated annealing-type algorithms). We shall in fact show that if U(.) and {fk }
are suitably behaved, ak = A/k and b2 = B/k log log k for k large with B/A > Co (where Co is
a positive constant which depends only on U(.)), and {Xk} is tight, then Xk - S* as k -- oc in
probability. We also give a condition for the tightness of {Xk}. We note that the convergence of
Zk to 5 can be established under very weak conditions on {fk} assuming {Zk} is bounded. Here
the convergence of Xk to S* is established under somewhat stronger conditions on {(k} assuming
that {XkI is tight (which is weaker than boundedness).

2.3.2 Convergence of the Modified Stochastic Gradient Algorithm

The analysis of the convergence of {Xk} is usually based on the asymptotic behavior of the asso-
ciated ordinary differential equation (ODE)

it = -VU(z(t)) (2.65)

(c.f. [26, 27]). This motivates our analysis of the convergence of {Xk} based on the asymptotic
behavior of the associated stochastic differential equation (SDE)

dY(t) = -VU(Y(t))dt + c(t)dW(t), (2.66)

where W(.) is a standard d-dimensional Wiener process and c(.) is a positive function with c(t) --- 0
as t -- oo. This is just the diffusion annealing algorithm discussed in [31, Equation (4.3)]. with
T(t) = c2 (t)/2. The asymptotic behavior of Y(t) as t -- xo has been studied intensively by a
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number of researchers. In [19. 251. convergence results where obtained by considering a version
of 2.66 with a reflecting boundary: in [3]. the reflecting boundary was removed. Our analysis of
{Xk} is based on the analysis of Y(t) developed in [31, where the following result is proved: if
U(.) is well-behaved and c2(t) = C/log t for t large with C > C0 (the same constant Co as abovw
then Y(t) - S* as t - oc. To see intuitively how iXk} and Y(.) are related, let t. = Ek-1 a
ak = A/kAb2 = B/kloglogk, c.2 (t) = C/log t, and B/A = C. Note that bk ((tk) .. Then we

should have that

Y(tk+l) - Y(tN) - (tk+1 t-k)VU(Y(tk)) + c(tk)(TV(tk+l) -- l(tk))

= Y(tk) - ak rU(Y(tk)) + c(tk)Vk

where { 1k } is a sequence of standard d-dimensional independent Gaussian random variables. Hence
(for {1k.} small enough) {Xk} and {Y(t,)} should have approximately the same (listributions. Of
course, this is a heuristic: there are significant technical difficulties in using Y(.) to analyze {Xkt
because we must deal with long time intervals and slowly decreasing (unbounded) Gaussian random
variables.

An algorithm like 2.63 was first proposed and analyzed in [25]. However, the analysis required
that the trajectories of {Xk } lie within a fixed ball (which as achieved by modifying 2.63 near the
boundary of the ball). Hence such a version of 2.63 is only suitable for optimizing U(.) over a
compact set. Furthermore the analysis also required ýk to be zero in order to obtain convergence.
In our first analysis of 2.63 in [16], we also required that the trajectories of {Xk} lie in a compact
set. However, our analysis did not require ýk to be zero, which has important implications when
VU(,) is not measured exactly. In our later analysis of 2.63 in [17], we removed the requirement
that the trajectories of {Xk} lie in a compact set. From our point of view this is the most significant
difference between our work in [17] and what is done in [25, 16] (and more generally in other work on
global optimization such as [4]): we deal with unbounded processes and establish the convergence
of an algorithm which finds a global minimum of a function when it is not specified a priori what
bounded region contains such a point.

We now state the simplest result from [17] concerning the convergence of the modified stochastic
gradient algorithm 2.63. We will require

A v
k logbk log k large. (2.67)ak kv rk 1g lIog k"

and the following conditions:

(Al) U(.) is a C 2 function from Rd to [0, oc) such that the S* = {x : U(x) < U(y) V y} C). (We
also require some mild regularity conditions on U(.); see 2.63).

VU IT I(A2) lim,_ -1•- > 0' l~mm--,. IVU(•)z o

(A3) lirn,-. ( VU--l , )

(A4) For k = 0, 1,. .. , let 'k be the a-field generated by X 0 ,W0 ,.... ,Wk- 1 , I0 ..... k-1. There
exists an L > 0, a > -1, and 8 > 0 such that

< •Lak(j 2 + 1), Ekk1I< aLa"(jXkl + 1) w.p. 1
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and 11k7 is independent of Fk..

Theorem 2.3.1 Assume (A I)-(A4) hold. Let {Xk} be yii'en by 2.6.. Then there exists u (-onsta(t

Co such that for B/A > Co
Xk - S* cis k

in probability.

Proof. See [17]. 1

Remarks:

1. The constant Co plays a critical role in the convergence of Xk as k - oc and also Y(t) as
t -- oc. In [3], it is shown that the constant Co (denoted there by c0 ) has an interpretation

in terms of the action functional for a family of perturbed dynamical systenis: see [3] for a
further discussion of Co including some examples.

2. It is possible to modify 2.63 in such a way that only the lower bound and not the upper bound

on JVU(')l in (A2) is needed (see [17]).

3. In [17] we actually separate the problem of convergence of {Xk} into two parts: one to
establish tightness and another to establish convergence given tightness. This is analogous to

separating the problem of convergence of {Xk } into two parts: one to establish boundedness
and another to establish convergence given boundedness (c.f. [261). Now in [17] the conditions
given for tightness are much stronger than the conditions given for convergence assuming

tightness. For a particular algorithm it is often possible to prove tightness directly, resulting
in somewhat weaker conditions than those given in [31, Theorem 3.1].

2.3.3 Continuous-State Markov Chain Algorithm

In this section we examine the convergence of a class of continuous-state Markov chain annealing
algorithms. Our approach is to write such an algorithm in the form of a modified stochastic gradient

algorithm of (essentially) the type considered in Section 2.3.1. A convergence result is obtained
for global optimization over all of Rd. Some care is necessary to formulate a Markov chain with

appropriate scaling. It turns out that writing the Markov chain annealing algorithm is (essentially)
the form 2.63 is rather more complicated than writing standard variations of gradient algorithms
which use some type of (possibly noisy) finite difference estimate of VU(.) in the form 2.64 (c.f. [26]).

Indeed, to the extend that the Markov chain annealing algorithm uses an estimate of VU(.), it does

so in a much more subtle manner than a finite difference approximation.

Although some numerical work has been performed with continuous-state Markov chain an-

nealing algorithm in [23, 36], there has been very little theoretical analysis, and furthermore the
analysis of the continuous state case does not follow from the finite state case in a straightforward
way (especially for an unbounded state space). The only analysis we are aware of its in 1231 where a

certain asymptotic stability property is established. Since our convergence results for the continu-
ous state Markov chain annealing algorithm are ultimately based on the asymptotic behavior of the
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diffusion annealing algorithm, our work (lemonstrates and exploits the close relationship between
the Markov chain and diffusion versions of simulated annealing.

We shall perform our analysis of continuous state Markov chain annealing algorithms for a
Metropolis type chain. We remark that convergence results for other continuous-state Markov chain
sampling method-based annealing algorithms (such as the Heat Bath method) caii be obtained by
a similar procedure. Recall that the 1-step transition probability (dernsity for a continuous state
Metropolis-type (fixed temperature) Markov chain is given by

p(x, y) = q(x, Y)s(x, y) + m(x)b(Y - .x)

where
mn(x) = I - J q(x, y)s(.r, y)dy

and
s(x, y) = exp(-[U(y) - U(x)]+/T).

Here we have dropped the subscript on the weighting factor s(.r,y). If we replace the fixed tem-
perature T by a temperature sequence {TA. } we get a Metropolis-type annealing algorithm.

Our goal is to express the Metropolis-type annealing algorithm as a modified stochastic gradient
algorithm like 2.63 so as to establish its convergence. This leads us to choosing a nonstationary
Gaussian transition density

qk(X, y)1 ly-X (2.68)

,y (2irb• 2(x))d/2 exp(2b2,2-X)
T b2 a2 X

Tk(X) k bkak(x) (2.69)
2 ak

where ok(x) = (6k x1)vt, 6k j 0.

With these choices the Metropolis-type annealing algorithm can be expressed as

Xk+1 = Xk - cOk(VU(Xk) + Wk) + bka(Xk)Wk (2.70)

for appropriately behaved {f}. Note that 2.70 is not identical to 2.63 (because a(x) • 1), but is
turns out that Theorem 2.3.1 holds for {Xk} generated by either 2.63 or 2.70. We remark that the
state dependent term oa(x) term in 2.68- 2.69 produces a drift toward the origin proportional to
lxl, which is needed to establish tightness of the annealing chain.

This discussion leads us to the following continuous-state Metropolis-type annealing algorithm.
Let A(rn, A) denote d-dimensional normal measure with mean m and covariance matrix A.

Let {Xk} be a Markov chain with 1 step transition probability at time k given by

p(Xk+l E AIXk = .X) j sk(x,y)df(x, b 2U2(x)l)(y) + Mk(x)lAtr) (2.71)

where
mk (x) = 1 - f sk(x, y)dA(x, bk2(x)I)(y) (2.72)

Uk(X) =(rjxj)Vl (2.73)

18



S1j) = exp(2ak[U(y) - i.)(2.74)

A convergence result similar to the previous theorem (can be proved for the Metropolis type
annealing algorithms (c.f. [18]).
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